Ich versuche es wirklich, aber kämpfen, um zu verstehen, wie Autoregressive und Moving Average arbeiten. Ich bin ziemlich schrecklich mit Algebra und Blick auf es nicht wirklich verbessern mein Verständnis von etwas. Was ich wirklich lieben möchte, ist ein äußerst einfaches Beispiel für 10 zeitabhängige Beobachtungen, damit ich sehen kann, wie sie arbeiten. So sagen wir, dass Sie die folgenden Datenpunkte des Goldpreises haben: Zum Beispiel, zum Zeitpunkt 10, was wäre der Moving Average von Lag 2, MA (2), sei MA (1) und AR (1) oder AR (2) Ich habe traditionell gelernt, dass Moving Average so etwas wie: Aber bei der Betrachtung von ARMA-Modellen wird MA als eine Funktion der bisherigen Fehlerbegriffe erklärt, die ich nicht in den Kopf bringen kann. Ist es nur ein fancierer Weg, das Gleiche zu berechnen, fand ich diesen Beitrag hilfreich: (Wie man SARIMAX intuitiv versteht), aber whist die Algebra hilft, ich kann etwas wirklich deutlich sehen, bis ich ein vereinfachtes Beispiel davon sehe. Angesichts der Goldpreisdaten würden Sie zunächst das Modell abschätzen und dann sehen, wie es funktioniert (Impulsantwortanalyse). Vielleicht solltest du deine Frage nur auf den zweiten Teil verengen (und die Schätzung beiseite lassen). Das heißt, du würdest ein AR (1) oder MA (1) oder ein beliebiges Modell (z. B. xt0.5 x varepsilont) zur Verfügung stellen und uns fragen, wie funktioniert dieses Modell. Ndash Richard Hardy Für jedes AR (q) Modell der einfache Weg, um die Parameter (s) zu schätzen ist, OLS zu verwenden - und führen Sie die Regression von: Pricet Beta0 Beta1 cdot Preis dotso Betaq cdot Preis Lets do so (In R): (Okay, also habe ich ein bisschen betrogen und die Arima-Funktion in R verwendet, aber es gibt die gleichen Schätzungen wie die OLS-Regression - probier es). Jetzt schauen wir uns das MA (1) Modell an. Jetzt ist das MA-Modell ganz anders als das AR-Modell. Der MA ist gewichteter Durchschnitt der vergangenen Periodenfehler, wobei das AR-Modell die vorgegebenen Perioden der tatsächlichen Datenwerte verwendet. Die MA (1) ist: Pricet mu wt theta1 cdot w Wo mu ist der Mittelwert, und wt sind die Fehler Begriffe - nicht die previoes Wert des Preises (wie im AR-Modell). Nun, leider können wir die Parameter nicht so einfach wie OLS schätzen. Ich werde die Methode hier nicht abdecken, aber die R-Funktion arima nutzt maximale Likihood. Lets try: Hoffe das hilft (2) Was die MA (1) Frage betrifft. Sie sagen, der Rest ist 1.0023 für den zweiten Zeitraum. Das macht Sinn. Mein Verständnis des Restes ist der Unterschied zwischen dem prognostizierten Wert und dem beobachteten Wert. Aber Sie sagen dann den prognostizierten Wert für Periode 2, wird mit dem Rest für Periode 2 berechnet. Ist das Recht Isn39t der prognostizierte Wert für Periode 2 gerade (0.54230 4.9977) ndash Will TE Aug 17 15 bei 11: 24A RIMA steht für Autoregressive Integrated Moving Average Modelle. Univariate (Einzelvektor) ARIMA ist eine Prognosetechnik, die die zukünftigen Werte einer Serie, die ganz auf ihrer eigenen Trägheit basiert, projiziert. Seine Hauptanwendung liegt im Bereich der kurzfristigen Prognose, die mindestens 40 historische Datenpunkte erfordert. Es funktioniert am besten, wenn Ihre Daten ein stabiles oder konsistentes Muster im Laufe der Zeit mit einem Minimum an Ausreißern aufweisen. Manchmal genannt Box-Jenkins (nach den ursprünglichen Autoren) ist ARIMA in der Regel exponentiellen Glättungstechniken überlegen, wenn die Daten vernünftig lang sind und die Korrelation zwischen vergangenen Beobachtungen stabil ist. Wenn die Daten kurz oder stark flüchtig sind, kann eine Glättungsmethode besser funktionieren. Wenn Sie nicht mindestens 38 Datenpunkte haben, sollten Sie eine andere Methode als ARIMA beachten. Der erste Schritt bei der Anwendung der ARIMA-Methodik ist die Überprüfung der Stationarität. Stationarity impliziert, dass die Serie auf einem ziemlich konstanten Niveau im Laufe der Zeit bleibt. Wenn ein Trend existiert, wie in den meisten wirtschaftlichen oder geschäftlichen Anwendungen, dann sind Ihre Daten nicht stationär. Die Daten sollten auch eine konstante Varianz in ihren Schwankungen über die Zeit zeigen. Dies ist leicht zu sehen mit einer Serie, die stark saisonal und wächst mit einer schnelleren Rate. In einem solchen Fall werden die Höhen und Tiefen in der Saisonalität im Laufe der Zeit dramatischer werden. Ohne dass diese stationären Bedingungen erfüllt sind, können viele der mit dem Prozess verbundenen Berechnungen nicht berechnet werden. Wenn eine grafische Darstellung der Daten eine Nichtstationarität anzeigt, dann sollten Sie die Serie unterscheiden. Das Unterscheiden ist eine hervorragende Möglichkeit, eine nichtstationäre Serie in eine stationäre zu verwandeln. Dies geschieht durch Subtraktion der Beobachtung in der aktuellen Periode von der vorherigen. Wenn diese Umwandlung nur einmal zu einer Serie erfolgt, sagst du, dass die Daten zuerst differenziert wurden. Dieser Prozess eliminiert im Wesentlichen den Trend, wenn Ihre Serie mit einer konstanten Rate wächst. Wenn es mit zunehmender Rate wächst, können Sie das gleiche Verfahren anwenden und die Daten wieder unterscheiden. Ihre Daten würden dann zweiter differenziert. Autokorrelationen sind Zahlenwerte, die angeben, wie sich eine Datenreihe über die Zeit verhält. Genauer gesagt, es misst, wie stark Datenwerte bei einer bestimmten Anzahl von Perioden auseinander mit der Zeit miteinander korreliert sind. Die Anzahl der Perioden auseinander ist in der Regel die Verzögerung genannt. Beispielsweise misst eine Autokorrelation bei Verzögerung 1, wie die Werte 1 Periode auseinander in der ganzen Reihe miteinander korreliert sind. Eine Autokorrelation bei Verzögerung 2 misst, wie die Daten zwei Perioden voneinander getrennt sind. Autokorrelationen können von 1 bis -1 reichen. Ein Wert nahe 1 gibt eine hohe positive Korrelation an, während ein Wert nahe bei -1 eine hohe negative Korrelation impliziert. Diese Maßnahmen werden am häufigsten durch grafische Darstellungen als Korrelate ausgewertet. Ein Korrektogramm zeichnet die Autokorrelationswerte für eine gegebene Reihe bei verschiedenen Verzögerungen auf. Dies wird als Autokorrelationsfunktion bezeichnet und ist bei der ARIMA-Methode sehr wichtig. Die ARIMA-Methodik versucht, die Bewegungen in einer stationären Zeitreihe als Funktion von sogenannten autoregressiven und gleitenden Durchschnittsparametern zu beschreiben. Diese werden als AR-Parameter (autoregessive) und MA-Parameter (gleitende Durchschnitte) bezeichnet. Ein AR-Modell mit nur 1 Parameter kann als geschrieben werden. X (t) A (1) X (t-1) E (t) wobei X (t) Zeitreihe unter Untersuchung A (1) der autoregressive Parameter der Ordnung 1 X (t-1) die Zeitreihe verzögerte 1 Periode E (T) der Fehlerterm des Modells Dies bedeutet einfach, dass jeder gegebene Wert X (t) durch eine Funktion seines vorherigen Wertes X (t-1) plus einen unerklärlichen Zufallsfehler E (t) erklärt werden kann. Wenn der Schätzwert von A (1) 0,30 betrug, würde der aktuelle Wert der Reihe mit 30 seines Wertes 1 verknüpft sein. Natürlich könnte die Serie auf mehr als nur einen vergangenen Wert bezogen werden. Beispielsweise ist X (t) A (1) X (t-1) A (2) X (t-2) E (t) Dies zeigt an, dass der aktuelle Wert der Reihe eine Kombination der beiden unmittelbar vorhergehenden Werte ist, X (t-1) und X (t-2), plus einige zufällige Fehler E (t). Unser Modell ist jetzt ein autoregressives Modell der Ordnung 2. Moving Average Models: Eine zweite Art von Box-Jenkins-Modell heißt ein gleitendes Durchschnittsmodell. Obwohl diese Modelle dem AR-Modell sehr ähnlich sind, ist das Konzept hinter ihnen ganz anders. Bewegliche Durchschnittsparameter beziehen sich auf das, was in der Periode t nur auf die zufälligen Fehler geschieht, die in vergangenen Zeitperioden aufgetreten sind, dh E (t-1), E (t-2) usw. anstelle von X (t-1), X ( T-2), (Xt-3) wie in den autoregressiven Ansätzen. Ein gleitendes Durchschnittsmodell mit einem MA-Term kann wie folgt geschrieben werden. X (t) - B (1) E (t-1) E (t) Der Ausdruck B (1) heißt MA der Ordnung 1. Das negative Vorzeichen vor dem Parameter wird nur für Konvention verwendet und wird üblicherweise ausgedruckt Automatisch von den meisten Computerprogrammen. Das obige Modell sagt einfach, dass jeder gegebene Wert von X (t) direkt nur mit dem zufälligen Fehler in der vorherigen Periode E (t-1) und dem aktuellen Fehlerterm E (t) zusammenhängt. Wie bei autoregressiven Modellen können die gleitenden Durchschnittsmodelle auf Strukturen höherer Ordnung ausgedehnt werden, die unterschiedliche Kombinationen und gleitende Durchschnittslängen abdecken. Die ARIMA-Methodik ermöglicht auch die Erstellung von Modellen, die sowohl autoregressive als auch gleitende Durchschnittsparameter umfassen. Diese Modelle werden oft als gemischte Modelle bezeichnet. Obwohl dies für ein komplizierteres Vorhersage-Tool macht, kann die Struktur tatsächlich die Serie besser simulieren und eine genauere Prognose erzeugen. Pure Modelle implizieren, dass die Struktur nur aus AR - oder MA-Parametern besteht - nicht beides. Die von diesem Ansatz entwickelten Modelle werden in der Regel als ARIMA-Modelle bezeichnet, weil sie eine Kombination von autoregressiven (AR), Integration (I) - beziehen sich auf den umgekehrten Prozess der Differenzierung, um die Prognose zu produzieren, und gleitende durchschnittliche (MA) Operationen. Ein ARIMA-Modell wird üblicherweise als ARIMA (p, d, q) angegeben. Dies stellt die Reihenfolge der autoregressiven Komponenten (p), die Anzahl der differenzierenden Operatoren (d) und die höchste Ordnung des gleitenden Durchschnittsterms dar. Zum Beispiel bedeutet ARIMA (2,1,1), dass Sie ein autoregressives Modell zweiter Ordnung mit einer gleitenden durchschnittlichen Komponente erster Ordnung haben, deren Serie einmal differenziert wurde, um die Stationarität zu induzieren. Kommissionierung der richtigen Spezifikation: Das Hauptproblem in der klassischen Box-Jenkins versucht zu entscheiden, welche ARIMA-Spezifikation - i. e. Wie viele AR - und MA-Parameter enthalten sind. Dies ist, was viel von Box-Jenkings 1976 dem Identifizierungsprozess gewidmet war. Es hing von der grafischen und numerischen Auswertung der Probenautokorrelation und partiellen Autokorrelationsfunktionen ab. Nun, für Ihre Basismodelle ist die Aufgabe nicht allzu schwierig. Jeder hat Autokorrelationsfunktionen, die eine bestimmte Art und Weise aussehen. Wenn du aber in der Komplexität stehst, sind die Muster nicht so leicht zu erkennen. Um die Sache schwieriger zu machen, stellt Ihre Daten nur eine Stichprobe des zugrunde liegenden Prozesses dar. Dies bedeutet, dass Abtastfehler (Ausreißer, Messfehler usw.) den theoretischen Identifikationsvorgang verzerren können. Deshalb ist die traditionelle ARIMA-Modellierung eher eine Kunst als eine Wissenschaft.2.1 Moving Average Models (MA-Modelle) Zeitreihenmodelle, die als ARIMA-Modelle bekannt sind, können autoregressive Begriffe und gleitende durchschnittliche Begriffe enthalten. In Woche 1 lernten wir einen autoregressiven Begriff in einem Zeitreihenmodell für die Variable x t ist ein verzögerter Wert von x t. Zum Beispiel ist ein lag 1 autoregressiver Term x t-1 (multipliziert mit einem Koeffizienten). Diese Lektion definiert gleitende durchschnittliche Begriffe. Ein gleitender Durchschnittsterm in einem Zeitreihenmodell ist ein vergangener Fehler (multipliziert mit einem Koeffizienten). Lassen Sie (nt N (0, sigma2w)), was bedeutet, dass die wt identisch, unabhängig verteilt sind, jeweils mit einer Normalverteilung mit dem Mittelwert 0 und der gleichen Varianz. Das mit MA (1) bezeichnete 1-stufige gleitende Durchschnittsmodell ist (xt mu wt theta1w) Das durchschnittliche Modell der 2. Ordnung, das mit MA (2) bezeichnet wird, ist (xt mu wt theta1w theta2w) , Bezeichnet mit MA (q) ist (xt mu wt theta1w theta2w dots thetaqw) Hinweis. Viele Lehrbücher und Softwareprogramme definieren das Modell mit negativen Vorzeichen vor den Bedingungen. Dies ändert nicht die allgemeinen theoretischen Eigenschaften des Modells, obwohl es die algebraischen Zeichen der geschätzten Koeffizientenwerte und (unsquared) Terme in Formeln für ACFs und Abweichungen klappt. Sie müssen Ihre Software überprüfen, um zu überprüfen, ob negative oder positive Zeichen verwendet wurden, um das geschätzte Modell korrekt zu schreiben. R verwendet positive Zeichen in seinem zugrunde liegenden Modell, wie wir hier tun. Theoretische Eigenschaften einer Zeitreihe mit einem MA (1) Modell Beachten Sie, dass der einzige Wert ungleich Null im theoretischen ACF für Verzögerung 1 ist. Alle anderen Autokorrelationen sind 0. Somit ist ein Beispiel ACF mit einer signifikanten Autokorrelation nur bei Verzögerung 1 ein Indikator für ein mögliches MA (1) Modell. Für interessierte Schüler sind die Beweise dieser Eigenschaften ein Anhang zu diesem Handzettel. Beispiel 1 Angenommen, ein MA (1) - Modell ist x t 10 wt .7 w t-1. Wo (wt Overset N (0,1)). So ist der Koeffizient 1 0,7. Die theoretische ACF ist gegeben durch eine Handlung dieses ACF folgt. Die gerade dargestellte Kurve ist die theoretische ACF für eine MA (1) mit 1 0,7. In der Praxis wird eine Probe gewöhnlich ein solches klares Muster liefern. Unter Verwendung von R simulierten wir n 100 Abtastwerte unter Verwendung des Modells x t 10 w t .7 w t-1, wobei w t iid N (0,1). Für diese Simulation folgt eine Zeitreihenfolge der Stichprobendaten. Wir können nicht viel von dieser Handlung erzählen. Die Stichprobe ACF für die simulierten Daten folgt. Wir sehen eine Spike bei Verzögerung 1, gefolgt von allgemein nicht signifikanten Werten für die Vergangenheit 1. Beachten Sie, dass die Stichprobe ACF nicht mit dem theoretischen Muster des zugrundeliegenden MA (1) übereinstimmt, was bedeutet, dass alle Autokorrelationen für Verzögerungen nach 1 0 sind Eine andere Probe hätte eine etwas andere Probe ACF, die unten gezeigt wird, würde aber wahrscheinlich die gleichen breiten Merkmale haben. Theroretische Eigenschaften einer Zeitreihe mit einem MA (2) Modell Für das MA (2) Modell sind die theoretischen Eigenschaften die folgenden: Beachten Sie, dass die einzigen Werte ungleich Null im theoretischen ACF für die Verzögerungen 1 und 2 sind. Autokorrelationen für höhere Verzögerungen sind 0 So gibt ein Beispiel ACF mit signifikanten Autokorrelationen bei den Verzögerungen 1 und 2, aber nicht signifikante Autokorrelationen für höhere Verzögerungen ein mögliches MA (2) - Modell an. Iid N (0,1). Die Koeffizienten sind 1 0,5 und 2 0,3. Da es sich hierbei um ein MA (2) handelt, hat die theoretische ACF nur Nullwerte nur bei den Verzögerungen 1 und 2. Werte der beiden Nicht-Null-Autokorrelationen sind eine Auftragung der theoretischen ACF folgt. Wie fast immer der Fall ist, verhalten sich die Probendaten nicht ganz so perfekt wie die Theorie. Wir simulierten n 150 Probenwerte für das Modell x t 10 w t .5 w t-1 .3 w t-2. Wo w t iid N (0,1). Die Zeitreihenfolge der Daten folgt. Wie bei der Zeitreihen-Plot für die MA (1) Beispieldaten können Sie nicht viel davon erzählen. Die Stichprobe ACF für die simulierten Daten folgt. Das Muster ist typisch für Situationen, in denen ein MA (2) Modell nützlich sein kann. Es gibt zwei statistisch signifikante Spikes bei den Verzögerungen 1 und 2, gefolgt von nicht signifikanten Werten für andere Verzögerungen. Beachten Sie, dass die Stichprobe ACF aufgrund des Stichprobenfehlers nicht genau mit dem theoretischen Muster übereinstimmt. ACF für allgemeine MA (q) Modelle Eine Eigenschaft von MA (q) - Modellen im Allgemeinen ist, dass es für die ersten q-Verzögerungen und Autokorrelationen 0 für alle Verzögerungen gt q ungleichen Autokorrelationen gibt. Nicht-Eindeutigkeit der Verbindung zwischen den Werten von 1 und (rho1) in MA (1) Modell. Im MA (1) Modell, für jeden Wert von 1. Die reziproke 1 1 gibt den gleichen Wert für Als Beispiel, verwenden Sie 0,5 für 1. Und dann 1 (0,5) 2 für 1 verwenden. Youll bekommen (rho1) 0,4 in beiden Fällen. Um eine theoretische Einschränkung zu erfüllen, die Invertierbarkeit genannt wird. Wir beschränken die MA (1) - Modelle auf Werte mit einem absoluten Wert kleiner als 1. In dem gerade angegebenen Beispiel ist 1 0,5 ein zulässiger Parameterwert, wohingegen 1 10,5 2 nicht. Invertierbarkeit von MA-Modellen Ein MA-Modell soll invertierbar sein, wenn es algebraisch äquivalent zu einem konvergierenden unendlichen Ordnungs-AR-Modell ist. Durch konvergieren, verstehen wir, dass die AR-Koeffizienten auf 0 abnehmen, wenn wir uns in der Zeit zurückziehen. Invertierbarkeit ist eine Beschränkung, die in die Zeitreihen-Software programmiert ist, die verwendet wird, um die Koeffizienten von Modellen mit MA-Terme abzuschätzen. Es ist nicht etwas, das wir in der Datenanalyse überprüfen. Zusätzliche Informationen über die Invertierbarkeitsbeschränkung für MA (1) Modelle finden Sie im Anhang. Fortgeschrittene Theorie Hinweis. Für ein MA (q) Modell mit einem bestimmten ACF gibt es nur ein invertierbares Modell. Die notwendige Bedingung für die Invertierbarkeit ist, daß die Koeffizienten Werte haben, so daß die Gleichung 1- 1 y - ist. - q y q 0 hat Lösungen für y, die außerhalb des Einheitskreises liegen. R-Code für die Beispiele In Beispiel 1 haben wir die theoretische ACF des Modells x t 10 w t aufgetragen. 7w t-1 Und dann simuliert n 150 Werte aus diesem Modell und plotted die Probe Zeitreihen und die Probe ACF für die simulierten Daten. Die R-Befehle, die verwendet wurden, um das theoretische ACF zu zeichnen, waren: acfma1ARMAacf (mac (0,7), lag. max10) 10 Verzögerungen von ACF für MA (1) mit theta1 0,7 lags0: 10 erzeugt eine Variable namens Lags, die von 0 bis 10 reicht (1) mit theta1 0,7) abline (h0) fügt eine horizontale Achse zum Plot hinzu Der erste Befehl bestimmt den ACF und speichert ihn in einem Objekt Benannte acfma1 (unsere auswahl des namens). Der Plotbefehl (der 3. Befehl) zeichnet sich gegen die ACF-Werte für die Verzögerungen 1 bis 10 aus. Der ylab-Parameter markiert die y-Achse und der Hauptparameter setzt einen Titel auf den Plot. Um die numerischen Werte des ACF zu sehen, benutzen Sie einfach den Befehl acfma1. Die Simulation und die Plots wurden mit den folgenden Befehlen durchgeführt. Xcarima. sim (n150, list (mac (0.7))) simuliert n 150 Werte aus MA (1) xxc10 fügt 10 hinzu, um Mittel zu machen 10. Simulation standardmäßig 0. plot (x, typeb, mainSimulated MA (1) data) Acf (x, xlimc (1,10), mainACF für simulierte Probendaten) In Beispiel 2 wurden die theoretischen ACF des Modells xt 10 Gew .-% w t-1 .3 w t-2 aufgetragen. Und dann simuliert n 150 Werte aus diesem Modell und plotted die Probe Zeitreihen und die Probe ACF für die simulierten Daten. Die verwendeten R-Befehle waren acfma2ARMAacf (mac (0,5,0,3), lag. max10) acfma2 lags0: 10 plot (Verzögerungen, acfma2, xlimc (1,10), ylabr, typeh, Haupt-ACF für MA (2) mit theta1 0,5, Thex20.3) abline (h0) xcarima. sim (n150, list (mac (0.5, 0.3))) xxc10 plot (x, typeb, main simulierte MA (2) Serie) acf (x, xlimc (1,10), MainACF für simulierte MA (2) Daten) Anhang: Nachweis der Eigenschaften von MA (1) Für interessierte Studierende sind hier Beispiele für theoretische Eigenschaften des MA (1) Modells. Abweichung: (Text (xt) Text (mu wt theta1 w) 0 Text (wt) Text (theta1w) sigma2w theta21sigma2w (1theta21) sigma2w) Wenn h 1, der vorherige Ausdruck 1 w 2. Für irgendwelche h 2 ist der vorherige Ausdruck 0 Der Grund dafür ist, dass durch die Definition der Unabhängigkeit der Gew. E (w k w j) 0 für jedes k j Da ferner wt den Mittelwert 0, E (w j w j) E (w j 2) w 2 hat. Für eine Zeitreihe, Wenden Sie dieses Ergebnis an, um das oben angegebene ACF zu erhalten. Ein invertierbares MA-Modell ist eines, das als ein unendliches Ordnungs-AR-Modell geschrieben werden kann, das konvergiert, so dass die AR-Koeffizienten zu 0 konvergieren, wenn wir uns unendlich zurück in der Zeit bewegen. Nun zeigen Sie die Invertierbarkeit für das Modell MA (1). Dann ersetzen wir die Beziehung (2) für w t-1 in Gleichung (1) (3) (zt wt theta1 (z - θaw) wt theta1z - θ2w) Zur Zeit t-2. Gleichung (2) wird wir dann die Beziehung (4) für wt-2 in Gleichung (3) (zt wt theta1z-tha21w wt theta1z - tha21 (z-tha1w) wt theta1z - θ12z theta31w) Wenn wir fortfahren würden ( Unendlich), würden wir die unendliche Ordnung AR-Modell erhalten (zt wt theta1 z - theta21z theta31z - theta41z Punkte) Beachten Sie jedoch, dass bei 1 1 die Koeffizienten, die die Verzögerungen von z multiplizieren, in der Größe zunehmen wird (unendlich), wenn wir uns zurück bewegen Zeit. Um dies zu verhindern, brauchen wir 1 lt1. Dies ist die Voraussetzung für ein invertierbares MA (1) Modell. Infinite Order MA Modell In Woche 3 sehen wir, dass ein AR (1) Modell in eine unendliche Reihenfolge umgewandelt werden kann MA Modell: (xt-mu wt phi1w phi21w punkte phik1 w Punkte Summe phij1w) Diese Summierung von vergangenen weißen Rauschen ist bekannt Als die kausale Darstellung eines AR (1). Mit anderen Worten, x t ist eine spezielle Art von MA mit einer unendlichen Anzahl von Begriffen, die in der Zeit zurückgehen. Dies wird als unendliche Ordnung MA oder MA () bezeichnet. Eine endliche Ordnung MA ist eine unendliche Ordnung AR und jede endliche Ordnung AR ist eine unendliche Ordnung MA. Rückruf in Woche 1, stellten wir fest, dass eine Voraussetzung für eine stationäre AR (1) ist, dass 1 lt1. Lets berechnen die Var (x t) mit der Kausaldarstellung. Dieser letzte Schritt verwendet eine grundlegende Tatsache über geometrische Reihen, die (Phi1lt1) ansonsten die Reihe divergiert. NavigationDokumentation ist das unbedingte Mittel des Prozesses, und x03C8 (L) ist ein rationales, unendlich verzögertes Operatorpolynom (1 x03C8 1 L x03C8 2 L 2 x2026). Anmerkung: Die Konstante Eigenschaft eines Arima-Modellobjekts entspricht c. Und nicht das unbedingte Mittel 956. Durch Wolds-Zerlegung 1. Gleichung 5-12 entspricht einem stationären stochastischen Prozeß, vorausgesetzt, daß die Koeffizienten x03C8i absolut summierbar sind. Dies ist der Fall, wenn das AR-Polynom, x03D5 (L). Ist stabil Dh alle ihre Wurzeln liegen außerhalb des Einheitskreises. Darüber hinaus ist der Prozess kausal, sofern das MA-Polynom invertierbar ist. Dh alle ihre Wurzeln liegen außerhalb des Einheitskreises. Econometrics Toolbox erzwingt Stabilität und Umkehrbarkeit von ARMA-Prozessen. Wenn Sie ein ARMA-Modell mit arima angeben. Sie erhalten einen Fehler, wenn Sie Koeffizienten eingeben, die nicht mit einem stabilen AR-Polynom oder einem invertierbaren MA-Polynom übereinstimmen. Ähnlich schätzt die Schätzung während der Schätzung Stationaritäts - und Invertierbarkeitsbeschränkungen ein. Referenzen 1 Wold, H. Eine Studie in der Analyse der stationären Zeitreihe. Uppsala, Schweden: Almqvist amp Wiksell, 1938. Wählen Sie Ihr Land
No comments:
Post a Comment